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Abstract We develop a statistical mechanical description of current spikes experimentally
measured during first-order phase transitions on electrode surfaces. We interpret an experi-
mental current spike as an averaged result of the finite-size effects for a large ensemble of
crystalline domains (crystals) that are formed on the electrode surface, i.e., as an envelope
of mutually shifted single-crystal spikes of various heights and widths. Rather than starting
with a particular lattice gas model, we use rigorous results of Borgs and Kotecký on the
finite-size effects valid for a large class of models to describe, in a unifying way, a spike
corresponding to a first-order phase transition in a single crystal. We apply our results to
fit theoretical spikes to experiment with very good precision. Whenever a phase transition
is microscopically simulated by a lattice gas model, the data taken from experiment can be
used to determine the strength of interactions in the model. As an illustration, we consider
two experimental processes, both of which we model with the standard one-component lat-
tice gas.

Keywords Voltammogram · First-order phase transition · Lattice gas

1 Introduction

1.1 The Current Spikes to be Studied

Measurements of electrochemical quantities such as a potential, current, charge, resistance,
or capacitance use the fact that the measured quantity depends on the quality or the amount
of the substance analyzed in a given electrochemical reaction. Voltammetry is an important
electroanalytical method in which the reaction affects only a thin layer of the examined
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solution in a small neighborhood of the indication electrode. The electrode is polarized by a
controlled external electric potential ψ that varies linearly with time, ψ = ψi + νt , from an
initial value ψi up to a final value ψf > ψi ; the polarization speed

ν ≡ dψ

dt
(1.1)

is called the scan rate. In cyclic voltammetry the electrode polarization speed is reversed at
ψf and the potential is linearly returned to its initial value ψi .

As ψ varies, a current flows through the electrode surface and the corresponding current
density J is the measured electrochemical quantity. A voltammogram is a plot of the func-
tion J (ψ). There are two main contributions to the current: (a) the Faradaic current—due
to electrochemical reactions in the cell and the corresponding charge transfer occurring at
the electrode surfaces; and (b) the capacitive current—due to (dis)charge of the electrical
double layer capacitance of the electrode. The latter current does not involve any chemical
reactions, it only causes accumulation (removal) of charge on and in the very vicinity of the
electrode.

Bulk electrodeposition of a metal ion M+z onto an electrode surface consisting of atoms
of the same metal M begins at the equilibrium (Nernst) potential. When the potential ψ is
increased above the Nernst value, bulk deposition does not occur. However, for some metals
M it is possible to deposit the ion M+z on an electrode of a different, more noble metal
M ′ �= M ; for example, copper can be so deposited on a silver, gold, or platinum electrode
surface. This phenomenon is called underpotential deposition, and it results in a monolayer
or submonolayer deposition (once the metal ion is deposited on the electrode surface, it
cannot be further deposited on itself), and ordered two-dimensional phases commensurate
with the geometrical alignment of the electrode surface atoms are often observed.

A sudden deposition of a metallic (sub)monolayer on a crystalline electrode is repre-
sented by the presence of one or more sharp spikes in the associated voltammogram and can
be interpreted as a phase transition at the electrode surface [1]. In this paper we present a
statistical mechanical theory from which voltammogram spikes corresponding to first-order
phase transitions can be obtained. Moreover, we apply our theory to experiment and show
that macroscopic properties of a voltammogram spike determine the strength of microscopic
interactions in a lattice gas that one may use to model the associated deposition process.

1.2 A Brief History of Results

Pioneering statistical mechanical studies of first-order phase transitions on electrode sur-
faces with a view to underpotential deposition are due to Blum and Huckaby. They intro-
duced a lattice gas model [2] that successfully described the structure of phases experimen-
tally observed in the underpotential deposition of Cu on Au(111) [2–5].1 Nevertheless, their
theoretical description of voltammogram spikes was not completely satisfactory because,
using an infinite lattice of adsorption sites, they obtained infinitely tall and infinitely sharp
spikes. They resolved the problem by adding a qualitative “switching function” [2, 6].

Underpotential deposition experiments have also been extensively modeled with the help
of computer Monte Carlo simulations on lattice gases. The key works are due to Rikvold and
coworkers (Refs. [7, 8] and papers referenced there), especially their study of the underpo-
tential deposition of Cu on Au(111) in which two voltammogram spikes occur as the result

1The triplet 111 stands for the crystallographic Miller indices hkl.
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of first-order phase transitions [9, 10]. Using a finite lattice of adsorption sites, they obtained
voltammogram spikes of finite height and non-zero width that were in qualitative agreement
with experiment, but the simulated spikes were still too tall and sharp at the transitions [9].

In our earlier works [11, 12] we carried out a statistical mechanical analysis of voltam-
mogram spikes occurring during the underpotential deposition of Cu on Pt(111) and on
Au(111), and we obtained results that were in very good qualitative and quantitative agree-
ment with experiments. Our analysis was based on the observation that an electrode surface
consisted of a large number of finite “crystalline domains” that we called crystals. It soon
turned out that a voltammogram spike could not be a result of a first-order phase transition
in a single crystal: the current density from a crystal exhibited a spike that was, for a “typi-
cal” crystal (several hundred sites in size), about a hundred times taller and sharper than the
experimental one. However, due to finite-size effects spikes from various crystals are mutu-
ally shifted and of varying heights and widths, and the resulting average envelope of spikes
can very well fit the profile of a voltammogram spike. Thus, we conjectured that it is this
average that is actually measured and plotted in experiments, which led us to the following
hypothesis:

(H) Each and every crystal contributes to the overall current density depending on the size of
the crystal, its shape, and boundary conditions. A voltammogram spike is an averaged
result of contributions coming from all the crystals.

Using the rigorous theory of Borgs and Kotecký [13] to control the finite-size behavior of
the current density from a single crystal, the point then was to find a simple but physically
plausible way in which the contributions from various crystals were to be put together so that
theoretical and experimental voltammogram spikes agreed. From this viewpoint, a voltam-
mogram spike may be simply interpreted as an averaged result of finite-size effects in an
ensemble of crystals.

1.3 The Scope and Goals of the Present Paper

In this paper we continue in our statistical mechanical study of voltammogram spikes based
on the hypothesis (H) with the aim to generalize our previous particular results and to make
them readily applicable to a broader range of experiments.

We consider an electrode surface with a flow of current in it. We assume that the Faradaic
part of the current is exclusively due to the discharge of a single type of ion and that any
capacitive contributions can be neglected. Then the current density at the electrode interface
is given as [3]

J (ψ) = −κe0γ ν
∂Θ(ψ)

∂ψ
. (1.2)

Here κ is the number of adsorption sites on the electrode surface per unit area, e0 is the ele-
mentary charge, and ν is the scan rate. In addition, γ and Θ are the effective electrovalence
and the coverage of the ion deposited on the electrode surface, respectively. The quantity γ

relates the applied electric potential ψ to the chemical potential of the ion (c.f. (2.7)) and is
considered independent of ψ . The coverage Θ is defined as the statistical average value of
the fraction of adsorption sites occupied by the ion.

When the potential ψ is linearly increased from ψi to ψf , the ion is being stripped off
of the electrode surface and the coverage Θ(ψ) decreases. Upon the reversal of ψ and its
linear return to ψi , the ion is being deposited on the electrode surface and the coverage
Θ(ψ) increases. The minus sign in (1.2) is thus chosen to ensure that the current density
J (ψ) is positive for the stripping process.



338 J Stat Phys (2007) 129: 335–376

We will solely focus only on the stripping part of the deposition process, ν > 0. This
is due to the fact that our statistical mechanical analysis is, strictly speaking, valid only in
equilibrium, i.e., in the “quasistatic” limit ν → 0, while at higher scan rates kinetic effects
must be taken into account. Nevertheless, these effects should be rather less important in
stripping processes that in the deposition ones.

In order to model a voltammogram spike, we assume that the current density J (ψ) ex-
hibits, as ψ varies, a spike that corresponds to a first-order transition between two phases to
be denoted “+” and “−” in the sequel. However, unlike in Refs. [11] and [12], we do not start
our analysis by considering a specific lattice gas model to describe first-order phase transi-
tions in a specific experimental situation. Instead, we will use the rigorous Borgs–Kotecký
theory [13] of finite-size effects near first-order phase transitions to show that, for a wide
class of lattice models, namely, those that can be treated by the Pirogov–Sinai theory [14,
15], the behavior of the current density jC(ψ) from a single crystal C is remarkably univer-
sal. In particular, there are only three “mesoscopic” quantities (the crystal size SC , a shape
factor ξC , and a boundary tension τC , roughly speaking) that in essence fully characterize
the current density jC(ψ) and whose values can vary from crystal to crystal. Combined with
the hypothesis (H), the overall current density J (ψ) becomes a triple average of the current
densities jC(ψ) from all the crystals.

To evaluate this average, we suppose that the crystals do not mutually interact (since they
are well separated by defects formed on the electrode surface) and that the number of ad-
sorption sites that lie in the defect regions can be neglected with respect to their total number
on the electrode surface. However, since the mechanisms determining the distributions of the
values of the three quantities SC , ξC , and τC largely depend on the experimental methods of
preparation of the electrode surface, it may be hard to adopt sufficiently plain, yet physically
plausible assumptions on the general behavior of these distributions. While we are basically
able to do so in the case of τC , we will consider the value of ξC fixed (i.e., the crystals are
considered of a uniform shape), making thus the corresponding average trivial, and leave
the final average over the crystal sizes SC unevaluated. Nevertheless, we provide two simple
examples of the size distribution for which the size average can be easily evaluated. More-
over, in an appendix we argue that assuming the value of ξC constant can be checked from
experimental data and is usually appropriate.

When wishing to apply our theory and fit an experimental voltammogram spike, it is
useful to have a few macroscopic characteristics of the spike that can be easily measured as
well as obtained from the theory. We consider these four characteristics:

• the spike’s area A ≡ ∫ ∞
−∞ J (ψ)dψ ,

• its maximum position ψmax,
• the height H ≡ J (ψmax), and
• an asymmetry factor α ≡ 1

A

∫ ψmax
−∞ J (ψ)dψ ∈ (0,1) (the relative area of J (ψ) below

ψmax).

We will derive approximative formulas from which these characteristics can be evaluated
and describe a general strategy in which the theoretical current density can be fitted to an
experimental voltammogram spike. The strategy is illustrated with three examples for which
we also introduce a lattice gas model to microscopically simulate the phase transition. The
strengths of interactions in the model are then calculated, using the experimental fitting data.

1.4 The Structure of the Paper

We start by giving a formal setting of the considered experimental situation in Sect. 2. Our
main theoretical results are given in Sect. 3, including the evaluation of the triple average
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in Statement 3.14. In Sect. 4 we show how our theory can be applied to experiment, us-
ing Statement 4.1. As an illustration, we fit, with very good agreement, the voltammogram
spikes for the underpotential deposition of Cu on Pt(111) and on Pt(100). We also consider
a lattice gas model simulating the two deposition processes and calculate the strengths of
the involved microscopic interactions. A discussion of whether a voltammogram spike can
in principle correspond to the current density from a single crystal and comments on the
comparison of our theory with the intensive computer simulation studies of underpotential
deposition by Rikvold and co-authors Refs. [7–10] are included. The verification of State-
ments 3.14 and 4.1 is deferred to Sect. 5 and Sect. 6, respectively. Finally, in Appendix we
discuss the situation when the crystal shapes are not assumed uniform but can vary.

2 The Formal Setting

Let us first formally describe the experimental situation that was outlined in the Introduction
and that we will analyze theoretically in the subsequent sections.

We assume that the array of adsorption sites on the electrode surface creates a regular
two-dimensional lattice L, such as a square or a triangular lattice. We will use nL to denote
the number of all nearest neighbors of a fixed site on the lattice L; for instance, nZ2 = 4 for
the square lattice L = Z

2.

Definition 2.1 A crystal C is a finite, simply connected subset of the lattice L. We will use
SC to denote the number of sites in C and CL to denote the set of all crystals on L.

2.1 The Class of the Considered Lattice Models

As was shown by Blum and Huckaby [2–6], the underpotential deposition of an ion on
the electrode surface can be microscopically simulated by the behavior of a suitable lattice
gas model.2 Let Hω

C (σ ) be the Hamiltonian of a lattice model for a configuration σ in the
crystal C with boundary conditions ω. We will not introduce any particular Hamiltonian
until Sect. 4.2, though. Instead, we will proceed in a more general fashion and work with a
whole class of lattice models, namely, all the models that can be treated by the Pirogov–Sinai
theory [14, 15].

The class is introduced by giving the form (given in Definition 2.4 below) into which it
is possible to rewrite the grand-canonical partition function

Zω
C(μ) ≡

∑

σ

e−β[Hω
C

(σ )−μSC fr(σ )], β ≡ 1

kBT
, (2.1)

of each model in the class; here μ is the chemical potential for the adsorption of the ion
on the electrode, fr(σ ) is the number of sites in C occupied by the ion in the configuration
σ divided by SC , and β is the inverse temperature (T is the temperature and kB is the
Boltzmann constant). Thus, any lattice system whose partition function Zω

C can be put into
this form falls within the class. Let us now introduce the class precisely.

2For a thorough exposition on lattice systems, see [16], for example.
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Definition 2.2 Let Γ∞ be a countable set and let I ⊂ Γ∞ ×Γ∞ be a symmetric and reflexive
relation. A set Γ ⊂ Γ∞ is compatible if (γ1, γ2) �∈ I for any pair of distinct elements γ1, γ2 ∈
Γ .3 Given Γ ⊂ Γ∞, we write comΓ for the set of all compatible subsets of Γ .

For any function w : Γ∞ → C and any finite set Γ ⊂ Γ∞ we define

Z(Γ,w) ≡
∑

Γ ′∈comΓ

∏

γ∈Γ ′
w(γ ), (2.2)

where the summand corresponding to Γ ′ = ∅ is set equal to 1.

Remark 2.3 (i) The elements of the set Γ∞ are usually called contours (or polymers), w is
their weight, and Z is the corresponding contour (or polymer) partition function. Although
there are rather canonic prescriptions [13–15], the set of contours Γ∞, the relation I, and the
contour weight w are in principle introduced on a case-by-case basis, their definition being
tailored to the particular situation.

(ii) Due to the very abstract and general definition, contour models are often met in
the study of lattice models (see Remark 2.5(iv) below). There exist several, more or less
equivalent methods to control perturbatively the logarithm of Z via a series called a clus-
ter expansion [17–20]. The convergence of the series is guaranteed on condition that, for
example, [17]

∑

γ ′∈Γ∞:(γ ′,γ )∈I

e(ā+d̄)(γ ′)|w(γ ′)| � ā(γ ) ∀γ ∈ Γ∞ (2.3)

holds for some functions ā, d̄ : Γ∞ → [0,∞).
(iii) The condition (2.3) is usually true at sufficiently low temperatures (β large). This is

the case when contours are introduced as finite connected subsets of L representing energetic
barriers between ground states, the relation I means mutual intersection of contours, and
|w(γ )| behaves as e− constβ|γ |, where |γ | is the number of sites in the contour γ .4 On the
other hand, (2.3) does not always mean that β must be large enough. For example, for the
q-state Potts model it means that logq must be large enough.

Definition 2.4 Let the following be given:

(a) a countable set Γ∞ of contours (along with a symmetric and reflexive relation I);
(b) a mapping Λ assigning a finite set Λ(C) ⊂ Γ∞ of contours to any crystal C ∈ CL; and
(c) functions

eq : I → R,

eω
q : {1, . . . , nL − 1} × I → R,

wω
q : Γ∞ × I → R,

∀q ∈ Q (2.4)

where Q is a finite set and I ⊂ R is an open interval.

An abstract Pirogov–Sinai partition function in a crystal C is defined as

Zω
C(μ) ≡

∑

q∈Q

e−βEω
q (C,μ)

Z(Λ(C),wω
q (·,μ)) (2.5)

3An empty set or a set with a single element is also considered compatible.
4One may then take ā(γ ) = |γ | and d̄(γ ) = 1

2 constβ|γ |, for instance.
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with

Eω
q (C,μ) ≡ eq(μ)SC +

nL−1∑

m=1

eω
q (m,μ)B

(m)
C . (2.6)

Here B
(m)
C is the number of those sites in C each of which has exactly 1 � m � nL − 1

nearest neighbors lying in C, respectively.

We consider the class of all lattice models whose partition function Zω
C(μ) can be rewrit-

ten as an abstract Pirogov–Sinai partition function Zω
C(μ) for some set Γ∞, some mapping

Λ, and some functions eq(μ), eω
q (m,μ), and wω

q (γ,μ), where q attains only two values,
Q = {+,−}.

Remark 2.5 (i) The set Λ(C) is the set of contours in the crystal C. The function eq(μ)

is to be identified with the specific energy of the q-th ground state and eω
q (m,μ) with the

boundary energy density in the q-th ground state associated with every site that has exactly
1 � m � nL − 1 nearest neighbors lying in C. Then Eω

q (C,μ) becomes the energy of the
q-th ground state σ q in the crystal C, i.e., Eω

q (C,μ) = Hω
C (σ q) − μSCfr(σ q), and (2.6)

represents its bulk-boundary expansion.
(ii) The requirement that the energy density eω

q (m,μ) is in our setting uniquely deter-
mined by m restricts possible interaction potentials of the considered lattice models as well
as possible boundary conditions ω. It is satisfied for potentials and boundary conditions that
are translation invariant. A generalization to periodic potentials and boundary conditions is
possible, but we shall not pursue this more complicated situation here.

(iii) Although the Borgs–Kotecký theory [13] is applicable also to situations with a
multiple-phase coexistence, |Q| > 2, in this paper we focus on the simple case involving
only two phases, |Q| = 2. Even for systems with |Q| > 2 it may be still true that only two
of all the |Q| phases are stable in the explored portion of the phase diagram (one is far away
from triple points, for instance); we encountered such a situation in Ref. [12]. Then of all
the summands in (2.5) only the two associated with the stable phases are dominant, and one
effectively deals again with the situation |Q| = 2.

(iv) It turns out that the class of the Pirogov–Sinai models is quite rich. In particular,
it contains all the lattice models with a translation invariant finite-range m-potential and a
finite number of ground states. For a detailed exposition on the Pirogov–Sinai theory we
refer the reader to the original works [13–15, 21] or to an overview article [22].

2.2 The Current Density from a Single Crystal

The single-crystal current density must be introduced in agreement with the expression (1.2)
for the overall electrode current density J (ψ). To this end, one needs to realize that, as
the applied electric potential ψ varies, the chemical potential changes, μ = μ(ψ). This
dependence may be assumed to be linear [4],

μ(ψ) = μl(ψ) ≡ −e0γ (ψ − ψ0), (2.7)

where the constants γ and ψ0 are called the effective electrovalence of the ion deposited on
the electrode surface and a reference potential, respectively. For simplicity, we will assume
that (2.7) is valid for any ψ ∈ R.
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Definition 2.6 The coverage in a crystal C is the statistical average value of the fraction
fr(σ ) of occupied adsorption sites in C,

θω
C (μ) ≡ 1

Zω
C(μ)

∑

σ

fr(σ )e−β[Hω
C

(σ )−μSC fr(σ )]. (2.8)

The current density from a crystal C is

jω
C (ψ) ≡ −κe0γ ν

∂θω
C (μl(ψ))

∂ψ
, (2.9)

where the constants κ , e0, γ , and ν were introduced in (1.2).

From the definitions (2.8) and (2.9) it easily follows that

θω
C (μ) = 1

βSC

∂

∂μ
logZω

C(μ),

jω
C (ψ) = κ(e0γ )2ν

βSC

[
∂2

∂μ2
logZω

C(μ)

]

μ=μl(ψ)

.

(2.10)

Here we also used that the partition function Zω
C can be identified with a Pirogov–Sinai

partition function Zω
C .

2.3 Perturbative Control and the Existence of a Phase Transition

We want to apply the Borgs–Kotecký theory [13] in order to have a rigorous perturbative
control over the partition function Zω

C(μ) and thus, by virtue of (2.10), also over the cov-
erage θω

C (μ) and the current density jω
C (ψ) from a single crystal. In addition, to comply

with the physical setting outlined in the Introduction, we need that jω
C (ψ) exhibits a spike

corresponding to a first-order phase transition. With these two ends in view, we adopt the
following assumptions.

(As1) The functions e±(μ) and eω±(m,μ), m = 1, . . . , nL − 1, are C4(R) functions of μ

and their derivatives are uniformly bounded on R,
∣
∣
∣
∣
∂j e±(μ)

∂μj

∣
∣
∣
∣ � K

j

0 ,

∣
∣
∣
∣
∂j eω±(m,μ)

∂μj

∣
∣
∣
∣ � K

j

0 , ∀j = 1, . . . ,4, (2.11)

where the constant K0 > 0 is independent of μ.5 Moreover, the bound

sup
μ∈R

|eω
+(m,μ) − eω

−(m,μ)| � λ
d̄0

β
(2.12)

is true for some λ > 0. Here

d̄0 ≡ inf
γ∈Γ∞

d̄(γ ), (2.13)

where the function d̄(γ ) was introduced in Remark 2.3(ii).

5The reason to require differentiability exactly up to the 4-th order is that we need the current density jω
C

(ψ)

to be twice differentiable to locate its maximal value and that jω
C

(ψ) is already a second derivative of a
thermodynamic potential (see (2.10)).
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(As2) The weights wω±(γ,μ) are C4(R) functions of μ and the condition (2.3) holds.6

(As3) The bound

ξC ≡ BC√
SC

� ξ̂ , BC ≡
nL−1∑

m=1

B
(m)
C , (2.14)

is satisfied for a (sufficiently small) constant ξ̂ > 0. Here BC is the number of sites
in the crystal C lying on its 1-boundary (having at least one nearest neighbor in
L\C).

(As4) There exists a single value μ0 ∈ R of the chemical potential such that

e+(μ0) = e−(μ0). (2.15)

Furthermore,

0 < K1 � −∂(e+ − e−)(μ)

∂μ
� K2 (2.16)

for all μ ∈ R and some μ-independent constants K1 < K2 < ∞.

Remark 2.7 (i) The condition (2.12) permits only the “weak” boundary conditions ω that
would not strongly favor one of the two phases. The leading contributions to the partition
function thus cannot contain large droplets — configurations in one phase in the bulk of a
crystal and in the other phase near the crystal boundary.

(ii) If the condition (2.3) means that the temperature is sufficiently low (see Re-
mark 2.3(iii)), then d̄0 ∝ β  1.

(iii) The dimensionless ratio ξC takes into account the shape of crystals. It attains, for
a given lattice L, a minimum ξ̌ (exceeding the value 2

√
π corresponding to the disk) and

it increases as the crystal becomes more and more oblong. Hence, the bound (2.14) ex-
cludes crystals with too oblong shapes, and only crystals with parallelogram-like shapes are
allowed. It is understood that ξ̂ > ξ̌ .

The assumptions (As1–As3) ensure a perturbative control over Zω
C(μ). Namely, one can

find a constant b > 0 and construct functions f±(μ) and f ω± (m,μ), m = 1, . . . , nL − 1, that
are C4(R) functions of μ such that7 [13]

∂jf±(μ)

∂μj
= ∂j e±(μ)

∂μj
+ O(e−bd̄0),

∂jf ω± (m,μ)

∂μj
= ∂j eω±(m,μ)

∂μj
+ O(e−bd̄0), ∀j = 0, . . . ,4.

(2.17)

6In fact, a generalization of (2.3) to the derivatives of the weights with respect to μ is also necessary. Instead
of its precise formulation, we refer the reader to Ref. [13] (see also Remark (iii) in the Appendix of Ref. [23]
and Proposition A.1 in Ref. [24]).
7We use the symbol O(y) to denote an error term that can be uniformly bounded by consty, where the
constant does not depend on μ, β , or a crystal C.
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In addition,

∂jZω
C(μ)

∂μj
=

[
∂j

∂μj
(e−βFω+ (C,μ) + e−βFω− (C,μ))

]

(1 + S
j

CO(e−bd̄0
√

SC ))

∀j = 0, . . . ,4 (2.18)

for all μ ∈ R, where

F ω
± (C,μ) ≡ f±(μ)SC +

nL−1∑

m=1

f ω
± (m,μ)B

(m)
C . (2.19)

The bound (2.18) immediately implies that the free energy

f (μ) ≡ − 1

β
lim
C↗L

1

SC

logZω
C(μ) (2.20)

exists (the limit C ↗ L is in the van Hove sense due to (2.14)), and

f (μ) = min{f+(μ),f−(μ)}. (2.21)

Remark 2.8 According to (2.18), the partition function in a crystal C in which the phases +
and − coexist can be with a great precision expressed as

Zω
C(μ) ≈ e−βFω+ (C,μ) + e−βFω− (C,μ). (2.22)

The “free energies” F ω± (C,μ) of the (±)-phase deviate only slightly from the corresponding
“ground-state energies” Eω±(C,μ) defined in (2.6) in the sense that they possess the same
kind of a bulk-boundary expansion (2.19), and the “specific free energies” f±(μ) and the
“boundary free energy densities” f ω± (m,μ), including their derivatives, are in view of (2.17)
very well approximated by the corresponding “specific energies” e±(μ) and the “boundary
energy densities” eω±(m,μ).

The assumption (As4) is added to ensure the presence of a first-order phase transition;
this is a standard result of the Pirogov–Sinai theory [13–15]. Precisely, there exists a point
μtr ∈ R (the infinite-volume transition point) such that the free energy f (μ) has a discontin-
uous derivative at μtr. The point μtr is very close to μ0,

μtr = μ0 + O(e−bd̄0). (2.23)

The unique point ψtr associated with μtr through the linear mapping μl(ψ) introduced in
(2.7) is

ψtr = ψ0 − μtr

e0γ
. (2.24)

Remark 2.9 In fact, the point μtr is defined by the equality f+(μtr) = f−(μtr) (both phases
are stable at μtr), and then (2.23) readily follows from (2.15) and (2.17). The discontinuity
of the derivative of f (μ) at thus defined μtr is a consequence of (2.17), (2.21), and the
degeneracy-removing condition (2.16). Indeed, f (μ) equals f+(μ) above μtr and f−(μ)
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below μtr (the difference (f+ − f−)(μ) is decreasing, − ∂(f+−f−)(μ)

∂μ
� K1 + O(e−bd̄0) > 0

on R) so that

−
[

∂f (μtr + 0)

∂μ
− ∂f (μtr − 0)

∂μ

]

= −∂(f+ − f−)(μtr)

∂μ
> 0. (2.25)

This can be also expressed as a discontinuity in the infinite-volume coverage

θ(μ) ≡ lim
C↗L

θω
C (μ), (2.26)

namely,

θ(μtr + 0) − θ(μtr − 0) = −∂(f+ − f−)(μtr)

∂μ
> 0. (2.27)

The equalities

∂j θ(μ)

∂μj
= −∂j+1f (μ)

∂μj+1
=

{− ∂j+1f+(μ)

∂μj+1 , μ ∈ (μtr,∞),

− ∂j+1f−(μ)

∂μj+1 , μ ∈ (−∞,μtr),
∀j = 0, . . . ,3 (2.28)

are a consequence of (2.18). The fact the discontinuity (2.27) is positive (i.e., that the +
phase is stable above μtr, while the − phase is stable below it, and not the opposite) is just
a matter of choice made in (2.16).

2.4 Electrode Current Density J (ψ) as an Average

We imagine that a large but finite ensemble CE ⊂ CL of crystals is given; the ensemble
represents the collection of all crystals lying on the electrode surface. We also imagine that
some fixed boundary conditions ωE for the union E ≡ ∪C∈CE

C ⊂ L is given; it represents
the interaction of the crystals with the parts of the electrode surface that separate the crystals
from each other (i.e., with the defect regions on the electrode surface).8 The restriction
ωE(C) of ωE to the outer neighborhood of a crystal C constitutes the boundary conditions
for that crystal.

The crystals of the ensemble are assumed not to mutually interact so that the partition
function for the whole ensemble becomes the product of the partition functions of individual
crystals,

Z
ωE
E (μ) =

∏

C∈CE

ZωE(C)

C (μ). (2.29)

The total electrode coverage

Θ
ωE
E (μ) ≡ 1

Z
ωE
E (μ)

∑

σE

fr(σE)e−β[HωE
E

(σE)−μStotfr(σE)] = 1

βStot

∂

∂μ
logZ

ωE
E (μ), (2.30)

where the sum runs over the configurations σE on E, and fr(σE) is the number of sites from
E that are occupied in σE divided by the total number Stot ≡ ∑

C∈CE
SC of adsorption sites.

8As was pointed out in Refs. [11, 12], periodic boundary conditions are inappropriate to consider, for they
lead to results in evident disagreement with experiments.
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Combined with the definition (1.2) and (2.10), we obtain [12]

Θ
ωE
E (μ) = 〈θωE(C)

C (μ)〉C, J
ωE
E (ψ) = 〈jωE(C)

C (ψ)〉C (2.31)

with

〈·〉C ≡
∑

C∈CE

·PC, PC ≡ SC

Stot
. (2.32)

The electrode coverage Θ
ωE
E and current density J

ωE
E thus become averages of the cov-

erages θ
ωE(C)

C and current densities j
ωE(C)

C from the crystals under the discrete probability
distribution {PC}.

3 Results

In this section we formulate our main theoretical results. Their verification is also provided
here, with the exception of Statement 3.14 that is verified in Sect. 5.

3.1 The Finite-Size Effects for a Single Crystal

We begin with the analysis of the coverage θω
C (μ) and the current density jω

C (ψ) associated
with a single crystal C.

Definition 3.1 Let us introduce the shorthands

θ±(μ) ≡ −∂f±(μ)

∂μ
, θ tr

± ≡ θ±(μtr), (3.1)

h ≡ a2

4κν
, a ≡ (θ tr

+ − θ tr
−)κe0γ ν. (3.2)

Moreover, let

sω
C ≡

nL−1∑

m=1

[f ω
+ (m,μtr) − f ω

− (m,μtr)]B
(m)
C

BC

. (3.3)

Remark 3.2 (i) The quantity θ±(μ) represents the infinite-lattice coverage of the ion de-
posited on the electrode surface in the (±)-phase (c.f. (2.26)) and θ tr± is its value at the
transition point μtr.

(ii) The quantity sω
C represents the difference of boundary contributions to the free ener-

gies of the plus and the minus phases at μtr. The value of sω
C is determined by the boundary

conditions ω, i.e., by the details of the interactions of the crystal C with its surroundings.
Recalling that ω is in turn determined by the electrode defects, and these defects in general
change across the electrode surface, the value of sω

C varies from crystal to crystal. Notice
that sω

C behaves as a constant with respect to the size SC of the crystal as C ↗ L.

Employing the rigorous theory of finite-size effects near first-order phase transitions de-
veloped by Borgs and Kotecký [13], based in our situation on the bounds (2.17) and (2.18)
and the expressions (2.10), we obtain the following results.
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Statement 3.3 Let (As1)–(As4) be true and let SC be sufficiently large.

(1) There exists a unique point, ψω
C , at which jω

C (ψ) attains its maximal value. Introducing
τω
C through the equality

ψω
C ≡ ψtr − aτω

C

4h

ξC√
SC

, (3.4)

it follows that

τω
C = sω

C

[

1 + O

(
1√
SC

)]

. (3.5)

(2) We have

θω
C (μ) = θ+(μ) + θ−(μ)

2
+ θ+(μ) − θ−(μ)

2
tanh

[
2hβSC

a

μ − μω
C

e0γ

]

+ O

(
1√
SC

)

, (3.6)

where μω
C ≡ μl(ψ

ω
C ) is the chemical potential corresponding to ψω

C via (2.7). Moreover,

jω
C (ψ) = hβSC cosh−2

[
2hβSC

a
(ψ − ψω

C )

]

+ O(
√

SC). (3.7)

Remark 3.4 (i) The point ψω
C is shifted with respect to the infinite-lattice transition point

ψtr by an amount proportional to 1√
SC

. The shift is a pure finite-size effect, since the ratio
a
h

= 4
(θ tr+−θ tr−)e0γ

is independent of the scan rate ν.

(ii) In view of (3.7), the single-crystal current density jω
C (ψ) exhibits (very precisely) a

symmetric spike around ψω
C within the region of width O( 1

βSC
) that is much smaller than

the shift |ψω
C − ψtr|. The spike is described by the function cosh−2. In view of (3.6), around

the point μω
C corresponding to ψω

C the coverage θω
C (μ) abruptly but smoothly interpolates

between θ+(μ) and θ−(μ). The passage from one to the other takes place within the same
region and is described by the function tanh.

(iii) Farther away from ψω
C (for |ψ − ψω

C | � O( 1√
SC

)), when only one of the two phases

is stable, the coverage θω
C (μ) and the current density jω

C (ψ) are very well approximated by
their infinite-volume limits θ(μ) (see (2.26)) and j (ψ) ≡ −κe0γ ν

θ(μl (ψ))

∂ψ
, respectively. In

both cases the error terms are of the order O( 1√
SC

) [13].

(iv) The influence of the boundary conditions ω on jω
C (ψ) is basically limited to the

position of the maximum ψω
C . Hence, a different choice of ω results in the possible shift of

the function jω
C (ψ), but its profile remains practically unchanged. The same is also true for

θω
C (μ).

(v) In view of (3.3) and (3.5), the quantity τω
C is associated with the boundary tension

(the boundary free energy difference per unit length) in the crystal C that has the boundary
conditions ω. It should be pointed out that τω

C contains only a part of the information on the
shape of a crystal C. In fact, the dominant factor should be the process of the experimental
preparation of the electrode, upon completion of which the crystals are already formed on



348 J Stat Phys (2007) 129: 335–376

the electrode surface, i.e., before the deposition of a metal ion on the surface is carried out.
That is why we choose to consider the shape factor ξC as being independent of τω

C .
(vi) From (3.6) it follows that the shorthand h has the meaning of the height of the spike

exhibited by jω
C (ψ) for a crystal of unit size at β = 1, while a and is the area of this spike

within the interval |ψ − ψω
C | � O( 1√

SC
).

Besides the maximum point ψω
C , further characteristics of the single-crystal current den-

sity jω
C (ψ) can be readily obtained from Statement 3.3.

Consequence 3.5 Let (As1)–(As4) be true and let SC be sufficiently large. The height and
the half-width (the width at the half of the height) of the spike exhibited by jω

C (ψ) is

Hω
C ≡ jω

C (ψω
C ) = hβSC

[

1 + O

(
1√
SC

)]

,

Wω
C = log(

√
2 + 1)a

hβSC

[

1 + O

(
1√
SC

)]

.

(3.8)

The area under the spike is

Aω
C ≡

∫

R

jω
C (ψ)dψ = κe0γ ν[θ(∞) − θ(−∞)]

[

1 + O

(
1√
SC

)]

, (3.9)

where θ(μ) is the infinite-volume coverage (2.26).

Proof The bounds (3.8) follow directly from (3.7). In order to verify (3.9), it suffices to
observe that, by (2.9),

Aω
C

κe0γ ν
= −

∫

R

∂θω
C (μl(ψ))

∂ψ
dψ =

∫

R

∂θω
C (μ)

∂μ
dμ = θω

C (∞) − θω
C (−∞) (3.10)

and combine it with Remark 3.4(iii). �

3.2 The Finite-Size Effects for the Ensemble CE of Crystals

Using the equalities (2.31) and Statement 3.3, we may obtain expressions for the electrode
coverage Θ

ωE
E (μ) and the electrode current density J

ωE
E (ψ). However, the bounds (3.6) and

(3.7) from Statement 3.3 that describe the behavior of single-crystal coverage θω
C (μ) and

current density jω
C (ψ) are valid only for crystals C with a sufficiently large number SC of

adsorption sites. Nevertheless, we will use these two bounds also for crystals of small sizes,
assuming thus that this only insignificantly affects the values of the averages (2.31).

(As5) Let θ̃ω
C (μ) and j̃ω

C (ψ) be the functions on the right-hand side of (3.6) and (3.7),
respectively. We assume that

Θ
ωE
E (μ) = 〈θ̃ωE(C)

C (μ)〉C, J
ωE
E (ψ) = 〈j̃ωE(C)

C (ψ)〉C, (3.11)

where the average 〈·〉C was defined in (2.32).

Remark 3.6 In Ref. [11] we showed numerically for an Ising system in a n × n

parallelogram-shaped portion of a two-dimensional triangular lattice that the bounds (3.6)
and (3.7) are good approximations of the true single-crystal coverage and current density
for n � 4.
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Statement 3.7 Assume (As1)–(As5). Then

Θ
ωE
E (μ) = θ+(μ) + θ−(μ)

2
+ θ+(μ) − θ−(μ)

2

〈

tanh

[
2hβSC

a

μ − μω
C

e0γ

]〉

C

+ O

(〈
1√
SC

〉

C

)

, (3.12)

and

J
ωE
E (ψ) = hβ

〈

SC cosh−2

[
2hβSC

a
(ψ − ψω

C )

]〉

C

+ O(〈√SC〉C). (3.13)

Moreover, the area

A
ωE
E ≡

∫

R

J
ωE
E (ψ)dψ = κe0γ ν[θ(∞) − θ(−∞)]

[

1 + O

(〈
1√
SC

〉

C

)]

. (3.14)

Proof It suffices to use the bounds (3.6), (3.7), and (3.9) and the identity A
ωE
E =

〈AωE(C)

C 〉C . �

Remark 3.8 Since the leading term κe0γ ν[θ(∞) − θ(−∞)] of the area of the spike exhib-
ited by jω

C (ψ) is crystal-independent, it coincides with the leading term of the area under the
total current density J

ωE
E (ψ). In addition, the term is independent of the boundary conditions

ωE .

3.3 Evaluation of the Average 〈·〉C
Classifying the crystals according to their values of SC , τω

C , and ξC , the average 〈·〉C may be
alternatively expressed as a triple average. We will conveniently use this alternative expres-
sion to evaluate and analyze the properties of the coverage Θ

ωE
E (μ) and the current density

J
ωE
E (ψ).

Definition 3.9 Let

SE ≡ {S ∈ N : ∃C ∈ CE,SC = S},
TE ≡ {τ ∈ R : ∃C ∈ CE, τ

ωE(C)

C = τ },
XE ≡ {ξ ∈ [ξ̌ , ξ̂ ] : ∃C ∈ CE, ξC = ξ}.

(3.15)

For any S ∈ SE , τ ∈ TE , and ξ ∈ XE we introduce

CS
E ≡ {C ∈ CE : SC = S},

CS,τ
E ≡ {C ∈ CE : SC = S ∧ τ

ωE(C)

C = τ },
CS,τ,ξ

E ≡ {C ∈ CE : SC = S ∧ τ
ωE(C)

C = τ ∧ ξC = ξ}
(3.16)

and the discrete probability distributions {PS}, {P(S)
τ }, and {P(S,τ )

ξ } as

PS ≡ |CS
E |S
Stot

, P
(S)
τ ≡ |CS,τ

E |
|CS

E | , P
(S,τ )
ξ ≡ |CS,τ,ξ

E |
|CS,τ

E | , (3.17)
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respectively. Here | · | stands for the cardinality of the set.

Remark 3.10 Notice that PS is the fraction of adsorption sites lying in crystals of the size
SC = S. Moreover, P

(S)
τ is the fraction of crystals for which SC = S and the boundary tension

τ
ωE(C)

C = τ . Finally, P
(S,τ )
ξ is the fraction of crystals for which SC = S, τ

ωE(C)

C = τ , and
ξC = ξ .

Statement 3.11 Let a function fC : SE × TE ×XE → R be given. Then

〈fC〉C = 〈〈〈fC(S, τ, ξ)〉ξ 〉τ 〉S, (3.18)

where

〈·〉S ≡
∑

S∈SE

·PS, 〈·〉τ ≡
∑

τ∈TE

·P(S)
τ , 〈·〉ξ ≡

∑

ξ∈XE

·P(S,τ )
ξ (3.19)

are the averages under the probability distributions {PS}, {P(S)
τ }, and {P(S,τ )

ξ }, respectively.

Proof The statement easily follows from the definition (2.32) of the average 〈·〉C and the
obvious identity S

Stot
|CS,τ,ξ

E | = PSP
(S)
τ P

(S,τ )
ξ . �

Remark 3.12 (i) In view of (3.4), the maximum position ψω
C of the single-crystal current

density jω
C (ψ) is a function on SE × TE ×XE , namely,

ψω
C = ψC(SC, τω

C , ξC) with ψC(S, τ, ξ) ≡ ψtr − aτ

4h

ξ√
S

. (3.20)

Combined with (3.7), we get

jω
C (ψ) = jC(SC, τω

C , ξC,ψ) + O(
√

SC), (3.21)

where

jC(S, τ, ξ,ψ) ≡ hβS cosh−2

[
2hβS

a
(ψ − ψC(S, τ, ξ))

]

. (3.22)

A similar expression can also be obtained for the coverage θω
C (μ).

(ii) As soon as the distributions {PS}, {P(S)
τ }, and {P(S,τ )

ξ } are known, Θ
ωE
E and J

ωE
E can

be evaluated (analytically or at least numerically) from (3.18). The latter equation shows
that the electrode coverage Θ

ωE
E and current density J

ωE
E may be interpreted as averages of

“typical” coverages and current densities, respectively, from crystals of size S. The word
typical means, however, that the averages over τ and ξ have already been taken.

(iii) In view of (3.18), the error terms O(〈 1√
SC

〉C) and O(〈√SC〉C) in (3.12) through

(3.14) may be expressed as O(〈 1√
S
〉S) and O(〈√S〉S), respectively.

Present-day experiments do not provide much insight as to explicit forms of the dis-
tributions {PS}, {P(S)

τ }, and {P(S,τ )
ξ }. Therefore, in order to proceed, we shall consider the

following simple, yet physically plausible scenario.
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(As6) We neglect possible shape variations of crystals by assuming that ξC has a constant
value, ξ0, for all the crystals. Then (3.18) becomes

〈fC〉C = 〈〈fC(S, τ, ξ0)〉τ 〉S. (3.23)

(As7) For all μ ∈ R we assume that
(a) the values from TE are within an interval of length proportional to S−1/4,

TE ⊂ [τ0 − wτ , τ0 + wτ ],

τ0 ∈ R,
w̄1

S1/4
� wτ � w̄2

S1/4
(0 < w̄1 < w̄2 < ∞);

(3.24)

(b) the mesh size Δτ > 0, i.e., the maximal distance between two adjacent elements
of TE , tends to zero,

Δτ → 0; (3.25)

(c) for each S ∈ SE there are piecewise differentiable functions PS,pS : R → [0,∞)

such that

PS(τ ) = P
(S)
τ ∀τ ∈ TE, (3.26a)

PS(τ ) = 0 ∀τ ∈ R\[τ0 − wτ , τ0 + wτ ], (3.26b)

lim
Δτ→0

PS(τ )

Δτ
= pS(τ),

M1

wτ

� sup
τ∈R

pS(τ) � M2

wτ

(3.26c)

for some constant 0 < M1 < M2 < ∞, and

lim
Δτ→0

dPS (τ )

dτ

Δτ
= dpS(τ )

dτ
,

dpS(τ )

dτ
= O

(
1

w2
τ

)

(3.26d)

whenever the derivatives exist.

Remark 3.13 (i) It is rather complicated to conjecture general features of the distribution
{P(S,τ )

ξ } because the crystal shape that chiefly affects the value of ξC may be to a large
extent dependent on the experimental way of preparation of the electrode surface (see Re-
mark 3.4(v)). This factor is often hard to take into account theoretically. Nevertheless, it
turned out in our previous works [11, 12] that very good agreement of theoretical results
with experiment could be achieved, even if ξC is taken constant.9 On the other hand, it
proved crucial to take into account variations in the crystal size SC and the boundary tension
τ

ωE(C)

C .
(ii) Due to the immense number of crystals on the electrode surface, |CE |  1, the values

τ ∈ TE are to be extremely closely spaced (Δτ → 0) and the average 〈·〉τ is to be practi-
cally the same if the number of crystals is multiplied (macroscopic reproducibility). View-
ing τ

ωE(C)

C as a random boundary quantity, almost all crystals should have the values of the

9In Appendix we briefly discuss the situation when the effect of the average 〈·〉ξ is not completely overlooked.
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boundary tension concentrated in an interval of length proportional to the inverse magnitude
of fluctuations on the crystal boundary, i.e., proportional to B

−1/2
C = ξ

−1/2
C S

−1/4
C .

(iii) Since the area
∫

pS(τ) dτ of the function pS is 1, the height of pS is assumed to be
of the order O( 1

supppS
) = O( 1

wτ
). Then, similarly, the derivative of pS is at most of the order

O(
supτ pS (τ)

supppS
) = O( 1

w2
τ
).

The assumption (As6) makes the average 〈·〉ξ trivial to perform. Using (As7), the average
〈·〉τ can also be managed by finding the leading contribution and estimating the remaining
ones. As a result, we express the 〈·〉C average as an average over the sizes S of crystals of a
dominant term and a remainder.

Statement 3.14 Let 0 < δ < 1
8 and let (As1)–(As7) be true. Introduce

τS(ψ) ≡ −4h
√

S

aξ0
(ψ − ψtr). (3.27)

Then

J
ωE
E (ψ) = 〈DS(ψ) +RωE

S (ψ)〉S, (3.28)

where

DS(ψ) ≡ 4h

ξ0

√
SpS(τS(ψ)) (3.29)

with

M1

w̄2
S3/4 � sup

ψ

DS(ψ) � M2

w̄1
S3/4 (3.30)

(the constants w̄1, w̄2, M1, and M2 were introduced in (As7)) and the remainder

|RωE
S (ψ)| � 4h

ξ0

[
1

β
O(S1/2+2δ) + O(S1/2) + O(S3/4e−2Sδ

)

]

. (3.31)

The statement is verified in Sect. 5.

Remark 3.15 (i) Notice that τS(ψ) is the solution of the equation ψC(S, τ, ξ0) = ψ , where
ψC was defined in (3.20). Thus, at τ = τS(ψ) and ξ = ξ0 the argument of cosh−2 in (3.22)
vanishes.

(ii) Consider the function jC(S, τ, ξ,ψ) that very well approximates the current den-
sity from a single crystal (see (3.21)). From (3.28) and (3.29) it follows that the τ -average
〈jC(S, τ, ξ0,ψ)〉τ can be well described by DS(ψ) — a suitably re-scaled function pS .
Thus, the effect of the τ -average is to decrease the height of the cosh−2 spike exhibited
by jC(S, τ, ξ0,ψ) from O(S) to O(S3/4) and, since the spike’s area is essentially crystal
independent (see (3.9)), to increase the spike’s width from O(S−1) to O(S−3/4). The domi-
nant term DS(ψ) is concentrated around the potential ψ for which τS(ψ) = τ0, i.e., around
ψC(S, τ0, ξ0). Notice also that DS(ψ) is β-independent, once pS(τ) is so.

(iii) The heuristic idea behind the results of Statement 3.14 is as follows. When τ is
changed, the profile of the spike exhibited by jC(S, τ, ξ0,ψ) remains the same, the spike
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Fig. 1 The crystal current
density jC(S, τ, ξ0,ψ) weighed
with the Gaussian distribution
pS(τ) with S constant plotted for
several equidistant values of τ

(alternating full and dotted lines).
The dashed line represents the
corresponding average
〈jC(S, τ, ξ0,ψ)〉τ multiplied by
a suitable constant to give the
height of the central spike. The
average 〈jC(S, τ, ξ0,ψ)〉τ is
again Gaussian

(the maximum position ψC(S, τ, ξ0)) only gets shifted. According to (3.20), this shift is
proportional, by the factor aξ0

4h
√

S
, to the change of τ . Thus, as τ changes over the interval

[τ0 − wτ , τ0 + wτ ] of length 2wτ = O(S−1/4), the spikes of jC(S, τ, ξ0,ψ) are spread, pro-
portionally to τ , over an interval of length 2wτ

aξ0
4h

√
S
+O(S−1) = O(S−3/4) (the term O(S−1)

represents the half-width of jC(S, τ, ξ0,ψ)). Since the half-width O(S−1) of the spikes is
much less than the interval’s width O(S−3/4), the profile of the average 〈jC(S, τ, ξ0,ψ)〉τ is
well approximated by the profile of pS .

Constructing a lattice gas model, in Ref. [12] we obtained pS(τ) that was a Gaussian
centered at τ0. Taking such pS(τ), Fig. 1 shows an illustrative plot of the product pS(τ) ×
jC(S, τ, ξ0,ψ) for several values of τ with S kept constant. The average 〈jC(S, τ, ξ0,ψ)〉τ ≈
DS(ψ) is again (very precisely) Gaussian.

(iv) Experimental voltammogram spikes are almost always asymmetric. Considering a
symmetric average 〈jC(S, τ, ξ0,ψ)〉τ such as the one from Fig. 1, it is easy to perceive that
(3.28) predicts a current density J

ωE
E (ψ) that is typically asymmetric. Indeed, in view of

(3.20), the point ψC(S, τ0, ξ0) around which the symmetric average 〈jC(S, τ, ξ0,ψ)〉τ is cen-
tered depends on S non-linearly. Then, as S varies, the points ψC(S, τ0, ξ0) accumulate at ψtr

from one side (depending on the sign of τ0), i.e., the spikes exhibited by 〈jC(S, τ, ξ0,ψ)〉τ
are spread inhomogeneously on the ψ -axes (see Fig. 2). Then J

ωE
E (ψ), the average of these

spikes over S, is in general asymmetric, even if the distribution {PS} is symmetric (see
Fig. 3). The only case when J

ωE
E (ψ) is symmetric corresponds in the considered situation

to τ0 = 0 when there are no shifts between various spikes, ψC(S, τ0 = 0, ξ0) = const = ψtr

(see also Remark 4.2(vi)).

4 Application to Experiment

For application purposes, it is convenient to know global features of the electrode current
density J

ωE
E (ψ), such as its maximum position, height, or asymmetry. In principle, these

can be derived from the bound (3.28), or at least within the approximation

J
ωE
E (ψ) ≈ 〈DS(ψ)〉S (4.1)
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Fig. 2 The averages 〈jC(S, τ, ξ0,ψ)〉τ for S = 1, . . . ,14 depicted as Gaussians. For each spike its maximum
point ψC(S, τ0, ξ0), where τ0 > 0 is fixed, is indicated on the ψ -axes. As S increases, the maximum positions
accumulate from the left at ψtr

of the dominant term DS(ψ) from (3.28), provided a more detailed knowledge of the func-
tion pS(τ) from (As7)(c) and of the distribution PS of crystal sizes is available.

We will not pursue the task on a general level — this would require the adoption of further
assumptions on the behavior of pS(τ) and PS . Instead, in order to obtain results that can be
readily applied to experiments, we will consider a specific, simple example of the function
pS(τ). Namely, we let the function be of a triangular shape that is symmetric around τ0 and
independent of the crystal size S,

pS(τ) = Δ(τ) ≡

⎧
⎪⎨

⎪⎩

S
1/4
0
δ

(
1 − S

1/4
0
δ

|τ − τ0|
)
, |τ − τ0| � δ

S
1/4
0

,

0, |τ − τ0| � δ

S
1/4
0

,

(4.2)

where S0 is a fixed crystal size and the parameter δ > 0. The ratio δ

S
1/4
0

is the half-width

of the function Δ(τ). In addition, we will approximate the discrete average over the crystal
sizes S by a continuous one, i.e., we consider a continuous probability density function ρ(S)

such that

〈·〉S ≈
∫ ∞

0
·ρ(S)dS; (4.3)
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Fig. 3 The averages 〈jC(S, τ, ξ0,ψ)〉τ from Fig. 2 weighed with a Gaussian distribution PS plotted for
S = 1, . . . ,14 (the averages for S > 10 practically vanish). The thick spike is the resulting current density
J

ωE
E

(ψ) multiplied by a suitable constant to fit the plot

this will simplify the forthcoming analysis (see Lemma 6.3 and 6.1). Hence, combining
(4.1), (4.2), and (4.3), we have

J
ωE
E (ψ) ≈ J (ψ − ψtr) (4.4)

with

J (x) ≡ 4h

ξ0

∫ ∞

0
Δ

(

−4h
√

S

aξ0
x

)√
Sρ(S)dS. (4.5)

Statement 4.1 Let ρ : [0,∞) → [0,∞) be a continuous probability density function with a
support (0, Sρ), where 0 < Sρ � Stot.10

(1) The function J evaluated for τ0 and for −τ0 are reflections of each other,

[J (x)]τ0 = [J (−x)]−τ0 . (4.6)

(2) The function J attains a maximum at x = xmax if and only if

xmax = − aξ0τ0

4h
√

Smax
, (4.7)

10The crystal size cannot exceed the total number Stot < ∞ of the adsorption sites on the electrode surface.
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where the crystal size 0 < Smax < Sρ is the solution of the equation

∫ Smax

S1

Sρ(S)dS =
∫ S2

Smax

Sρ(S)dS, (4.8)

and satisfies the inequality

2S2
maxρ(Smax) > S2

1ρ(S1) + S2
2ρ(S2). (4.9)

Here

S1 ≡
{

(1 − 1
|c| )

2Smax, |c| � 1,

0, |c| � 1,
S2 ≡

(

1 + 1

|c|
)2

Smax, c ≡ τ0S
1/4
0

δ
. (4.10)

(3) The maximal value

H ≡ J (xmax) = 4hS
1/4
0

ξ0δ
H0, (4.11)

where

H0 ≡
∫ S2

S1

(1 − |xS |)
√

Sρ(S)dS with xS ≡ c

(√
S

Smax
− 1

)

. (4.12)

(4) The area

A ≡
∫

R

J (x) dx = a (4.13)

and the ratio of the area to the left of xmax and the total area

α ≡ 1

A

∫ xmax

−∞
J (x) dx =

∫ S2

S1

1 − xS(2 − |xS |)
2

ρ(S)dS + α0 (4.14)

where

α0 ≡
{∫ S1

0 ρ(S)dS, τ0 � 0,
∫ ∞

S2
ρ(S)dS, τ0 � 0.

(4.15)

Statement 4.1 is verified in Sect. 6.

Remark 4.2 (i) As a matter of fact, Statement 4.1(1) is, within the approximation (4.1), true
also for the current density J

ωE
E as soon as pS(τ) is symmetric around τ0 (not necessarily of

a triangular shape). In addition, it is equally valid for discrete and continuous distributions
of the crystal sizes S.

(ii) Statement 4.1(1) implies

(xmax)τ0 = −(xmax)−τ0 , (H)τ0 = H−τ0 , (α)τ0 = 1 − (α)−τ0 . (4.16)
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It is easy to check that (4.7), (4.11), and (4.14) satisfy these symmetry relations. The physical
difference between the cases τ0 > 0 and τ0 < 0 is that boundary conditions prefer the phase
+ in the former case and the phase − in the latter case (see (3.4) and the end of Remark 2.9).
Consequently, the maximum xmax is shifted below and above zero, respectively.

(iii) The equation (4.8) says that the areas of the function Sρ(S) within the intervals
S1 � S � Smax and Smax � S � S2, respectively, coincide.

(iv) The equality (4.13) remains true even within the approximation (4.1),

〈∫

R

DS(x) dx

〉

S

= 4h

ξ0

〈√
S

∫

R

pS(τS(x)) dx

〉

S

= a

〈∫

R

pS(τ) dτ

〉

S

= a. (4.17)

(v) The parameter α characterizes an asymmetry of the function J . The extremal val-
ues of α correspond to the limits τ0 → ±∞ (“infinitely large” shifts between the spikes
exhibited by Δ(− 4h

√
S

aξ0
x)). In Sect. 6 we show that the extremal values are

αmax ≡ lim
τ0→∞α =

∫ S∞
max

0
ρ(S)dS, αmin ≡ lim

τ0→−∞α =
∫ ∞

S∞
max

ρ(S)dS, (4.18)

where S∞
max ≡ lim|c|→∞ Smax(c). Moreover, if ρ(S) is sufficiently differentiable, then S∞

max

can be approximated by the maximum S̃∞
max of the function S3/2ρ(S) (i.e., d[S3/2ρ(S)]

dS
= 0 and

d2[S3/2ρ(S)]
dS2 < 0 at S = S̃∞

max).
(vi) In particular, if τ0 = 0, then we have

xmax = 0, H = 4hS
1/4
0

ξ0δ

∫ ∞

0

√
Sρ(S)dS, α = 1

2
, (4.19)

i.e., the function J (x) is symmetric around its unique maximum attained at x = 0. Physi-
cally, the value τ0 = 0 corresponds to “neutral” boundary conditions — the situation when
the boundary conditions do not prefer either of the two phases in the system. As a conse-
quence, the maximum position xC(S, τ0 = 0, ξ0) = 0 of the function Δ(τS(x)) is the same
for every S, i.e., the symmetric spikes exhibited by the function are not mutually shifted. We
derived (4.19) in Ref. [11] for the special case of the Ising model (used there to describe the
underpotential deposition of Cu on Pt(111)).

4.1 Two Examples

In order that Statement 4.1 can be applied, it is necessary to know the probability density
function ρ(S). In this subsection we consider two simple examples of the function ρ(S) for
which we explore the results of Statement 4.1.

4.1.1 Example 1

Let us assume that the distribution of crystals on the electrode surface that are of size S is

the Gaussian ρ̃G(S) with the mean value SG > 0 and the variance
S2
G

2π
. Then the distribution

of adsorption sites lying in crystals of size S is

ρG(S) ≡ Sρ̃G(S)
∫ ∞

0 Sρ̃G(S)dS
= (1 − εG)

S

S2
G

e
−π( S

SG
−1)2

, (4.20)
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Fig. 4 The results of Statement 4.1 exemplified for the probability density function ρG(S) from (4.20). The

function SGρG(SGs) = (1 − εG)se−π(s−1)2
is show in (a)

where εG ≡ e−π +π erf
√

π−π

e−π +π erf
√

π+π

.= 7.82710−4. Strictly speaking, the support of ρG(S) is the infi-

nite interval (0,∞) and not only a finite interval (0, Sρ). Nevertheless, due to the exponential
decay, this fact may be neglected for practical applications.

Applying Statement 4.1 to ρG, we readily get the following results.

(1) The crystal size Smax = smax
SG

, where smax is the solution of the equation

(∫ smax

s1

−
∫ s2

smax

)

s2e−π(s−1)2
ds = 0 (4.21)

with

s1 ≡
{

(1 − 1
|c| )

2smax, |c| � 1,

0, |c| � 1,
s2 ≡

(

1 + 1

|c|
)2

smax. (4.22)

(2) The maximal value

H = 4hS
1/4
0

ξ0δ
H0, (4.23)



J Stat Phys (2007) 129: 335–376 359

where

H0 ≡ √
SG

∫ s2

s1

(1 − |Xs |)s3/2e−π(s−1)2
ds with Xs ≡ c

(√
s

smax
− 1

)

. (4.24)

(3) The ratio

α =
∫ s2

s1

1 − Xs(2 − |Xs |)
2

se−π(s−1)2
ds +

{∫ s1
0 se−π(s−1)2

ds, τ0 � 0,
∫ ∞

s2
se−π(s−1)2

ds, τ0 � 0.
(4.25)

Fig. 4 shows the dependencies of smax, H0, and α on the parameter c as evaluated for the
density function ρG(S). Notice that, using Remark 4.2(v) and (4.11), we have

smax(c = ±∞) ≈
1 +

√
1 + 5

π

2
.= 1.305,

αmax
.= 0.660, αmin

.= 0.341,

1√
SG

H0(0) =
∫ ∞

0
s3/2e−π(s−1)2

ds
.= 1.062.

(4.26)

4.1.2 Example 2

As another example, we consider the distribution that we introduced in Refs. [11, 12].
Namely, supposing that the crystals are a result of line defects occurring with a probability
0 < P < 1, the distribution ρ̃H (S) of crystal sizes on the electrode surface is proportional to
(1 − P )BC/2 = (1 − P )ξ0

√
S/2, where we recalled (As6). Therefore, using the shorthand

SH ≡
[

2

ξ0 log(1 − P )

]2

, (4.27)

we have ρ̃H (S) = 1
2SH

e−√
S/SH , implying

ρH (S) ≡ Sρ̃H (S)
∫ ∞

0 Sρ̃H (S)dS
= S

12S2
H

e−√
S/SH , SH > 0. (4.28)

Again, due to the exponential decay, one may neglect for practical applications that the
support of ρH (S) is the infinite interval (0,∞) instead of a finite interval (0, Sρ).

Applying Statement 4.1 to ρH , we obtain these results.

(1) The crystal size Smax = smax
SG

, where smax is the solution of the equation

(∫ smax

s1

−
∫ s2

smax

)

s2e−√
s ds = 0 (4.29)

with s1, s2 defined by (4.22).
(2) The maximal value

H = 4hS
1/4
0

ξ0δ
H0, (4.30)
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where

H0 ≡
√

SH

12

∫ s2

s1

(1 − |Xs |)s3/2e−√
s ds, (4.31)

with Xs defined in (4.24).
(3) The ratio

α = 1

12

∫ s2

s1

1 − Xs(2 − |Xs |)
2

se−√
s ds + 1

12
×

{∫ s1
0 se−√

s ds, τ0 � 0,
∫ ∞

s2
se−√

s ds, τ0 � 0.
(4.32)

Figure 5 shows the dependencies of smax, H0, and α on the parameter c as evaluated for the
density function ρH (S). Notice that, using Remark 4.2(iv) and (4.11), we have

smax(c = ±∞) ≈ 25,

αmax ≈ 1 − 118

3e5

.= 0.735, αmin ≈ 118

3e5

.= 0.265,

1√
SH

H0(0) =
∫ ∞

0
s3/2e−√

s ds = 4.

(4.33)

4.2 Microscopic Interpretation

A statistical mechanical lattice gas model can be used to microscopically simulate phase
transitions on the electrode surface. For the sake of illustration, let us consider the simple
case of a voltammogram spike that is associated with the first-order phase transition that
occurs when the ion adsorbed on the electrode surface discharges and forms a full monolayer
(θ(∞) − θ(−∞) = 1) on the surface.

Namely, we consider the standard, one-component lattice gas on the lattice L with an
attractive nearest-neighbor interaction ε < 0, the corresponding Hamiltonian in a crystal C

being

Hω
C (σ ) = εN

(2)
C (σ ) − μN

(1)
C (σ ) + ωN (2)

C (σ ). (4.34)

At any site x ∈ C either σ x = 1 or σ x = 0 (the site is either occupied by the deposited ion
or it is vacant), N

(1)
C (σ ) is the number of sites in the crystal occupied in σ , N

(2)
C (σ ) is the

number of nearest-neighbor pairs of sites in C both of which are occupied in σ , and N (2)
C (σ )

is the number of nearest-neighbor pairs of sites one site of which is in C and is occupied
in σ and the other site is outside the crystal. Thus, we assume fixed occupied boundary
conditions ω outside the crystal, but with an attractive interaction ω < 0 that is in general
different from the bulk interaction ε.

Whenever |ε| is sufficiently large and μ = μtr ≡ nLε

2 , the lattice gas model from (4.34)
is known to exhibit a first-order phase transition at which the fully occupied phase coexists
with the fully vacant one (see Sect. 5.3 in Ref. [25] and references therein). This model is
therefore suitable for describing the considered phase transition.

Remark 4.3 The model from (4.34) is equivalent to the standard Ising model with the bulk
coupling − ε

4 , the boundary coupling − 2ω−ε
4 , and the magnetic field 2μ−nLε

4 (see Ref. [11]).
The value ω = ε

2 represents free boundary conditions. The “weak” boundary conditions (see
Remark 2.7(i)) corresponds to ω such that |ω

ε
− 1

2 | � 1
6 [11].
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Fig. 5 The results of Statement 4.1 exemplified for the probability density function ρH (S) from (4.28). The

function SH ρH (SH s) = s
12 e−√

s is show in (a)

Observing that

nL

2
(SC − BC) +

nL−1∑

m=1

m

2
B

(m)
C and

nL−1∑

m=1

(nL − m)B
(m)
C (4.35)

is the number of nearest-neighbor pairs inside C and the number of nearest-neighbor pairs
with one site in C and the other one outside C, respectively, the energy of the fully occupied
ground state in C is

Eω
+(C,μ) = εnL − 2μ

2
SC + 2ω − ε

2

nL−1∑

m=1

(nL − m)B
(m)
C , (4.36)

whereas the energy of the fully vacant ground state is

Eω
−(C,μ) = 0, (4.37)

implying

e+(μ) = εnL − 2μ

2
, eω

+(m,μ) = 2ω − ε

2
(nL − m),

e−(μ) = 0, eω
−(m,μ) = 0.

(4.38)
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4.2.1 The Dependence of τ0 and δ on ε and ω

The parameters τ0 and δ in the definition (4.2) of the function Δ(τ) are connected with the
interactions ε and ω of the lattice gas model (4.34). This becomes clear if one investigates
the boundary conditions in a given crystal from the microscopic point of view. We provided
such an analysis in Ref. [12]. The basic idea, tailored here to the model (4.34), is as follows.

Since boundary conditions are determined by the various defects surrounding the crystals
formed on the electrode surface, physically most appropriate boundary conditions should be
random. Then the average

〈gC(τ)〉τ =
∫

gC(τ)Δ(τ) dτ (4.39)

of a function gC(τ) over the values of τω
C for the model (4.34) corresponds to the average

over the randomness surrounding a given crystal. However, an essentially equivalent average
result is to be obtained if the boundary conditions are fixed with an interaction ω that, al-
though being constant along the boundary of every crystal, has values changing from crystal
to crystal. The τ -average (4.39) is in this way replaced by the average over the various val-
ues of ω. Writing the value of ω for a given crystal C as proportional to the bulk interaction,
ω = ηε, the average over ω becomes equivalent to the average over η, and we conclude

∫
gC(τ)Δ(τ) dτ ≈

∫
gC(τ

ηε

C )G(η)dη, (4.40)

where G(η) is the probability density function for the variable η. The relation (4.40) enables
one to link τ0 and δ to ε and ω as soon as G(η) is known.

In order to describe G(η), we identify η with the occupancy of the deposited ion in the
region of defects around C, i.e., the number of sites along the outer boundary of C occupied
by the ion divided by the number BC of all outer boundary sites. Referring to the local-limit
theorem, G(η) may be approximated by the Gaussian probability density function GS(η)

that has a mean value 0 < η0 < 1 and the variance [12]

D2
S = η0(1 − η0)

BC

= η0(1 − η0)

ξ0

√
S

.

In the last step we recalled that BC = ξ0
√

SC .
In view of (2.17), (3.3), (3.5), and (4.38), we have

τ
ηε

C = uCη + vC (4.41)

with

uC ≡
[

ε

nL−1∑

m=1

(nL − m)
B

(m)
C

BC

+ O(e−bd̄0)

][

1 + O

(
1√
SC

)]

,

vC ≡
[

−ε

2

nL−1∑

m=1

(nL − m)
B

(m)
C

BC

+ O(e−bd̄0)

][

1 + O

(
1√
SC

)]

.

(4.42)

Consequently,
∫

gC(τ
ηε

C )G(η)dη ≈
∫

g(τ)
1

|uC |GS

(
τ − vC

|uC |
)

dτ. (4.43)
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Combined with (4.40), we require that the maximum position uCη0 + vC and the half-width
2
√

log 4|uC |DS0 of 1
|uC |GS0(

τ−vC

|uC | ) coincide with the maximum position τ0 and the half-

width δ

S
1/4
0

of Δ(τ). Hence, introducing ω0 ≡ η0ε, we find

τ0 = uC

ω0

ε
+ vC,

δ = 2|uC |
|ε|

[

log 4
ω0(ε − ω0)

ξ0

]1/2

(ε < ω0 < 0).

(4.44)

The quantities uC and vC are essentially independent of C for crystals of regular shapes
when B

(m)
C is either proportional to BC or is constant with respect to BC (the former terms

B
(m)
C are dominant, while the latter ones are negligible as C ↗ L). For example,

uC ≈ 2ε, vC ≈ −ε for a triangular L and C parallelogram (4.45)

and

uC ≈ ε, vC ≈ −ε

2
for a square L and C square. (4.46)

4.3 How to Apply the Theory

The parameters occurring in our theory may be summarized as follows.

(a) The macroscopic parameters to be taken from experiment:

ψmax, H, A, α, κ, ν, β, θ tr+ − θ tr−.

Notice that the inverse temperature β is insignificant, for J
ωE
E (ψ) is essentially indepen-

dent of it (see Remark 3.15(ii) and (4.2)).
(b) The parameters whose values can be evaluated from the theory. Since only the first four

parameters in (a) actually characterize the profile of a particular voltammogram spike,
our theory can yield, for a given spike, the values of four parameters. We prefer these
parameters to be

γ, ψtr, τ0, δ.

The values of τ0 and δ allow us to evaluate the corresponding values of the micro-
scopic interactions ε and ω0 for the model (4.34) via (4.44). Moreover, using that
μtr = −e0γ (ψtr − ψ0) by (2.7) and that μtr ≡ nLε

2 , we obtain the value of the reference
potential ψ0.

(c) The parameters whose values are to be chosen:

ξ0, S0, and the parameters in the definition of ρ(S).

For instance, the parameters in the definition of the probability density functions ρG(S)

and ρH (S) are SG and SH , respectively (see (4.20) and (4.28)).

Here is the sequence of steps for obtaining the values of γ , ψtr, τ0, and δ from the exper-
imentally measured values of A, ψmax, H , and α:

(1) find the function Smax(c) from (4.8);
(2) evaluate c, using (4.14) for the ratio α;
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Table 1 The parameters appearing in the theory and their values obtained by fitting the theoretical voltam-
mogram to experiment

Parameter Type Definition Pt(111), [26] Pt(100), [27] Pt(100), [28] Units

A taken from
experiment

(4.13) 0.498 4.831 2.567 μA V cm−2

ψmax (4.7) 0.3462 0.714 0.596 V

H (4.11) 23.35 186.3 116.8 μA cm−2

α (4.14) 0.502 0.709 0.670

κe0 (1.2) 241.1 208.8 208.8 μC cm−2

ν (1.2) 1.0 20.0 10.0 mV s−1

βe0 e0/(kBT ) 38.92 38.92 38.92 V−1

θ tr+ − θ tr− (3.1) 1.0 1.0 1.0

ξ0 chosen (As6) 4.0 4.0 4.0

ρ(S) (4.3) SG = 160.0 SH = 22.52 SH = 22.52

S0 (4.2) 160.0 135.1 135.1

γ yielded by
theory

(1.2) 2.066 1.157 1.229
ψtr (2.24) 0.3468 0.727 0.605 V

τ0 (As7) 4.229 96.21 70.23 meV

δ (4.2) 525.4 319.2 330.8 meV−1

ε (4.34) −446.3 −575.3 −579.2 meV

ω0 (4.44) −221.0 −191.4 −219.4 meV

ψ0 (2.7) −0.301 −0.268 −0.338 V

(3) evaluate Smax for this value of c;
(4) evaluate δ, using (4.11) for the height H ;
(5) evaluate τ0, using the definition of c from (4.10);
(6) evaluate ψtr, using (4.7) for the maximum position ψmax.

Independently, one can evaluate γ from (3.2) and (4.13) for the area A. Using thus obtained
values of γ , ψtr, τ0, and δ, we can evaluate the current density J

ωE
E (ψ) from (4.4) and (4.5).

We illustrate the application of our theory to experiment with a voltammogram spike
corresponding to the first-order phase transition that take place when the ion adsorbed on
the electrode surface discharges and forms a full monolayer on the surface. This simple case
can be microscopically simulated by the model (4.34).

4.3.1 Illustration 1

First, we consider a voltammogram spike with a small asymmetry (α is close to 1
2 ). Then a

good match with experiment may be expected even if the probability density function ρ(S)

is rather symmetric, and we take ρ(S) = ρG(S) (see (4.20)). As an example, we use the spike
measured in the underpotential deposition of Cu on Pt(111) from Ref. [26], Fig. 3(a). In this
case the adsorption sites on the Pt electrode surface form a triangular lattice, the (commen-
surate) adsorbed Cu monolayer has a Cu–Cu distance of 2.77 Å [29], and we assume the
crystals have the shape of a parallelogram. Column 4 in Table 1 contains the corresponding
values of experimental parameters, the chosen values of the parameters ξ0, S0, and SH , and
the values of the parameters evaluated from the theory. Notice that we set S0 equal to the
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Fig. 6 Experimental voltammograms (dashed lines) compared to the theoretical fit (full lines)

mean size SG of ρG(S). The choice SG = 160 amounts to the average linear crystal size,
approximately

√
SG

.= 12.65. In Fig. 6(a) we show the comparison of the theoretical and the
experimental voltammogram.

4.3.2 Illustration 2

Next, we consider a voltammogram spike with a moderate asymmetry, namely, the spike
associated with the underpotential deposition of Cu on Pt(100) from Ref. [27], Fig. 1(a)
and from Ref. [28], Fig 3(c). In this case the adsorption sites form a square lattice with the
Cu–Cu distance of 2.77 Å in the adsorbed monolayer [27]. We assume the crystals have the
shape of a square and take ρ(S) = ρH (S) (see (4.28)). Columns 5 and 6 in Table 1 contain
the corresponding respective values of the involved parameters. We set S0 equal to the mean
size 6SH of ρH (S). Choosing the line defect probability P = 1

10 (see (4.27)), we have SH
.=

22.52, and the average linear crystal size is approximately
√

6SH
.= 11.62. Figures 6(b) and
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6(c) show the theoretical and the experimental voltammograms. Their agreement is harder
to achieve in the former case (Fig. 6(b)) because the ratio α is rather close to the maximal
value αmax (see (4.33)).

4.4 Concluding Remarks

We finish the section with remarks on two issues of interest.

4.4.1 Can a Voltammogram Spike Correspond to the Current Density from a Single
Crystal?

It would be very natural to assume that a voltammogram spike is a result of a first-order
phase transition in a single crystal C, i.e., J

ωE
E (ψ) ≈ jC(S, τ, ξ0,ψ), where S and τ are

some “typical” values of the crystal size and of the boundary tension, respectively.
However, in the three experiments considered in the previous subsection this interpreta-

tion is clearly wrong. Indeed, the height of the spike exhibited by jC(S, τ, ξ0,ψ) is approx-

imately a2βS

4κν
(see (3.22) and (3.2)), while its half-width is about a divided by the height.

Evaluating this height and half-width for the experimental values of a,β, κ , and ν from
Table 1, they would match the height and the half-width of the voltammogram spike only
if the crystal size is unrealistically small: S

.= 2 (for the Pt(111) case) and S
.= 4 (for the

two Pt(100) cases). Equivalently, the spikes exhibited by the current density from a single,
“typical” crystal with a realistic size (say, S = 150) are taller and narrower by a factor of
about 50 or more than those measured in experiments.

In this way the height and the half-width of a voltammogram spike tell us about the
structure of the electrode surface. Namely, whether the surface consists of a single crystal
or many, essentially identical (“typical”) crystals on the one hand, or whether the surface
consists of many crystals with different sizes, boundary conditions, and shapes on the other
one. In the former case the current density that would approximate a voltammogram spike
can be obtained from a single crystal. In the latter case, however, the single-crystal interpre-
tation of a voltammogram spike is completely erroneous, and one must consider the average
from (3.18).

4.4.2 Comparison with Computer Simulated Studies

Rikvold and co-workers have intensively studied underpotential deposition with the help of
computer simulations. As a specific example of first-order phase transitions, they consid-
ered the underpotential deposition of Cu on Au(111) [9]. Basically, their idea is to consider
a particular lattice gas model on a crystal of a fixed size with periodic boundary conditions.
Choosing suitable values of energetic interactions of the model, they try to fit the experi-
mental spike, using numerical Monte Carlo simulations. They achieved very good qualita-
tive agreement, the simulated spikes having the shape of those measured in experiments.
However, the quantitative agreement is not completely satisfactory.

The philosophy of our theory is different. We assume that equilibrium statistical mechan-
ics is applicable (i.e., experiments with relatively slow scan rates are considered). Shapes of
voltammogram spikes are interpreted as averages, or “envelopes” of mutually shifted spikes
of current densities coming from all the various crystals on the electrode surface. Once we
can well control the finite-size effects that determine the single-crystal spikes, we eventually
obtain a voltammogram spike. As a matter of fact, we can carry out the calculations analyti-
cally (with a certain number of rather simplifying, yet physically plausible approximations).
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Since the finite-size effects in crystals show, under rather general conditions, a remarkable
universality, one can work with “mesoscopic” quantities like τω

C (see Statement 3.3), without
ever referring to a specific lattice gas model. It is in terms of these quantities that we can
actually fit a theoretical voltammogram spike to match an experimentally observed one. The
values of the quantities used in the fit then lead to the values of energetic interactions in a lat-
tice gas model, as soon as some model is constructed to simulate the deposition process. In
this way, a voltammogram spike informs us quantitatively about microscopic behavior on the
electrode surface, and our theory enables one to extract (at least a part of) this information.

It is still disputable which factors and to what extent they actually determine the broad-
ening and asymmetry of voltammogram spikes. In many experiments, especially at higher
potential scan rates, kinetic effects may be important (see the results of dynamic Monte
Carlo simulations from Refs. [7, 8, 10]). Nevertheless, as pointed out in the Introduction,
in the present paper we study only the stripping spikes so that kinetic effects should be less
important than for the deposition spikes.

5 Verification of Statement 3.14

According to (3.21), (3.23), (3.4), and (3.13),

J
ωE
E (ψ) = hβ

〈

S

〈

cosh−2

[
2hβS

a
(ψ − ψC(S, τ, ξ0))

]〉

τ

+ O(
√

S)

〉

S

= hβ〈S〈cosh−2[KS(τ − τS(ψ))]〉τ + O(
√

S)〉S, KS ≡ βξ0

√
S

2
, (5.1)

where ψC(S, τ, ξ) and τS(ψ) were introduced in (3.20) and (3.27), respectively. Taking into
account (3.19) and (3.26), we may write

〈cosh−2[KS(τ − τS)]〉τ =
∑

τ∈TE

P
(S)
τ cosh−2[KS(τ − τS)]

=
∑

τ∈TE

PS(τ ) cosh−2[KS(τ − τS)]

=
∑

τ∈T ∞
E

PS(τ ) cosh−2[KS(τ − τS)] = X1 + X2, (5.2)

where T ∞
E is a partition of the real axis with a mesh size not exceeding Δτ such that T ∞

E ∩
[τ0 − wτ , τ0 + wτ ] = TE and

X1 ≡
∑

τ∈T ∞
E

PS(τS)

δτ

δτ cosh−2[KS(τ − τS)], (5.3)

X2 ≡
( ∑

τ∈T ∞
E

:
KS |τ−τS |�Sδ

+
∑

τ∈T ∞
E

:
KS |τ−τS |�Sδ

)
PS(τ ) −PS(τS)

δτ

δτ cosh−2[KS(τ − τS)]. (5.4)

Here 0 < δτ � Δτ is the distance between a given τ ∈ T ∞
E and the closest element τ ′ ∈ T ∞

E

larger than τ . Clearly,

lim
Δτ→0

X1 = pS(τS)

∫ ∞

−∞
cosh−2[KS(τ − τS)]dτ = 2

KS

pS(τS). (5.5)
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Similarly,

lim
Δτ→0

X2 =
(∫

KS |τ−τS |�Sδ

+
∫

KS |τ−τS |�Sδ

)

[pS(τ) − pS(τS)] cosh−2[KS(τ − τS)]dτ. (5.6)

Using X21 to denote the first summand on the right-hand side of the last equation and X22

to denote the second one, we get

X21 � 2Sδ

KS

sup
KS |τ−τS |�Sδ

|pS(τ) − pS(τS)| � 2Sδ

KS

p̄′
S sup

KS |τ−τS |�Sδ

|τ − τS |

� 2p̄′
S

(
Sδ

KS

)2

, p̄′
S ≡ sup

τ

∣
∣
∣
∣
dpS(τ )

dτ

∣
∣
∣
∣, (5.7)

where the last supremum is taken over all τ ∈ R at which the derivative of pS exists. More-
over, since cosh−2 x � 4e−2|x| for all x ∈ R, we get

X22 � sup
τ∈R

|pS(τ) − pS(τS)|
∫

KS |τ−τS |�Sδ

4e−2KS |τ−τS | dτ

� 4p̄S

e−2Sδ

KS

, p̄S ≡ sup
τ

pS(τ ). (5.8)

Combining the last two bounds with (5.1), (5.2), and (5.5), in the limit Δτ → 0 we arrive at
the bound

J
ωE
E (ψ) = hβ

〈
2S

KS

[

pS(τS) + O

(

p̄′
S

S2δ

KS

)

+ O(p̄Se
−2Sδ

)

]

+ O(
√

S)

〉

S

= 4h

ξ0

〈√
SpS(τS) + 1

β
O(p̄′

SS
2δ) + O(p̄S

√
Se−2Sδ

) + O(
√

S)

〉

S

. (5.9)

Since p̄S = O(S1/4) and p̄′
S = O(S1/2) by (As7), Statement 3.14 now follows.

6 Proof of Statement 4.1

6.1 Part (1)

Since only the function Δ(τ) in the definition (4.5) of J (ψ) depends on τ0 (see (4.2)), it
suffices to observe that Δ(τ) is symmetric around τ0.

6.2 Part (2)

In the proof we will use two auxiliary lemmas, Lemma 6.1 and 6.3, that are stated below.
First, let τ0 = 0. Then, using (6.4) from Lemma 6.1 and the fact that ρ(S) > 0 for 0 < S <

Sρ , we have dJ (x)

dx
> 0 for every x < 0, whereas dJ (x)

dx
< 0 for every x > 0. Consequently,

xmax = 0, and (4.7) is true (for any Smax).
Second, let τ0 > 0. By virtue of Lemma 6.3 below,

dJ (x)

dx
=

{
−a( u

w
)2

∫ (
τ0−w

ux )2

0 Sρ(S)dS < 0, τ0 < w,

0, τ0 � w,
∀x � 0 (6.1)



J Stat Phys (2007) 129: 335–376 369

where w ≡ δ

S
1/4
0

> 0 and u ≡ 4h
aξ0

> 0. Moreover, in the case τ0 � w and x � 0 we also

have J (x) = 0 because − 4h
√

S
aξ0

x � 0 � τ0 − w so that Δ(− 4h
√

S
aξ0

x) = 0 by definition. We

therefore conclude that if xmax exists, it must be that xmax < 0. Using now (6.14), we may

express the conditions dJ (xmax)

dx
= 0 and d2J (xmax)

dx2 < 0 as

∫ S0
xmax

S−
xmax

Sρ(S)dS =
∫ S+

xmax

S0
xmax

Sρ(S)dS, (6.2)

and

2(S0
xmax

)2ρ(S0
xmax

) < (S−
xmax

)2ρ(S−
xmax

) + (S+
xmax

)2ρ(S+
xmax

), (6.3)

respectively, where S∗
x are defined in (6.17). Combining this with (4.7) and with the obser-

vation that S0
xmax

= Smax, S−
xmax

= S1, and S+
xmax

= S2, we get (4.8) and (4.9).
Third, if τ0 < 0, then one just recalls that (xmax)τ0 = −(xmax)−τ0 by (4.16).
Now, let us state and prove the two auxiliary lemmas.

Lemma 6.1 Let τ0 = 0 and let ρ : [0,∞) → [0,∞) be a bounded probability density func-
tion vanishing for S > Sρ , where 0 < Sρ � Stot. Then J is differentiable on R\{0}, and

dJ (x)

dx
= −a

( u

w

)2
signx

∫ Sx

0
Sρ(S)dS ∀x �= 0, (6.4)

where

Sx ≡
( w

ux

)2
, w ≡ δ

S
1/4
0

> 0, u ≡ 4h

aξ0
> 0. (6.5)

Remark 6.2 When τ0 = 0, the reason why J (x) is not differentiable at x = 0 is that
Δ(− 4h

√
S

aξ0
x) attains the maximum at x = 0 for every S.

Proof [Proof of Lemma 6.1] For any S ′ > 0,

∣
∣
∣
∣

∫ S′+ε

S′−ε

Δ(−u
√

Sx)
√

Sρ(S)dS

∣
∣
∣
∣ � 2

ε

w
sup
S>0

[√Sρ(S)] = O(ε) (6.6)

because ρ is bounded and vanishes for S � Sρ . Hence,

J (x) = au lim
ε→0

∫

(0,∞)\(S′−ε,S′+ε)

Δ(−u
√

Sx)
√

Sρ(S)dS, (6.7)

implying

J (x + ε) −J (x)

ε

= au lim
ε→0

∫

(0,∞)\(S′−ε,S′+ε)

Δ(−u
√

S(x + ε)) − Δ(−u
√

Sx)

ε

√
Sρ(S)dS. (6.8)
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If τ0 = 0 and x �= 0, the function Δ(−u
√

Sx) is smooth, except at x = ± w

u
√

S
. Thus, if

S �∈ (Sx − ε, Sx + ε), the function Δ(−u
√

Sx) is smooth on a small neighborhood of x, and
we can write the expansion

Δ(−u
√

S(x + ε)) − Δ(−u
√

Sx) = −u
√

Sε
dΔ(−u

√
Sx)

dτ
+ O(ε2), (6.9)

provided |ε| is small enough. Consequently, the limit limε→0
J (x+ε)−J (x)

ε
exists, it equals

the derivative dJ (x)

dx
, and, by virtue of (6.8),

dJ (x)

dx
= −au2 lim

ε→0

∫

(0,∞)\(Sx−ε,Sx+ε)

dΔ(−u
√

Sx)

dτ
Sρ(S)dS. (6.10)

This proves the differentiability of J (x) on R\{0}. Next, realizing that

− w

u
√

S
< x <

w

u
√

S
⇐⇒ −w < −u

√
Sx < w ∀0 < S < Sx, (6.11)

the value −u
√

Sx lies inside the support of the function Δ(τ) for every 0 < S < Sx . So,
taking into account that

w2 dΔ(−u
√

Sx)

dτ
=

{
signx, 0 < S < Sx,

0, S > Sx,
(6.12)

from (6.10) it follows that

dJ (x)

dx
= −a

(
u

w

)2

signx lim
ε→0

∫ Sx−ε

0
Sρ(S)dS, (6.13)

and we arrive at (6.4). �

Lemma 6.3 Let τ0 �= 0 and let ρ : [0,∞) → [0,∞) be a continuous probability density
function vanishing for S � Sρ , where 0 < Sρ � Stot. Then J (x) is twice differentiable, and

dJ (x)

dx
= −a

(
u

w

)2(∫ S0
x

S−
x

−
∫ S+

x

S0
x

)

Sρ(S)dS

d2J (x)

dx2
= 2

a

x

(
u

w

)2

[2(S0
x )

2ρ(S0
x ) − (S−

x )2ρ(S−
x ) − (S+

x )2ρ(S+
x )]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∀x < 0, (6.14)

d[J (x)]τ0

dx
= −d[J (−x)]−τ0

d(−x)
,

d2[J (x)]τ0

dx2
= d2[J (−x)]−τ0

d(−x)2
, (6.15)

and

dJ (0)

dx
=

{
−a( u

w
)2 sign τ0

∫ ∞
0 Sρ(S)dS, |τ0| < w,

0, |τ0| � w,

d2J (0)

dx2
= 0. (6.16)

Here

S0
x ≡

{
(

τ0
ux

)2, τ0 > 0,

0, τ0 � 0,
S±

x ≡
{

(
τ0±w

ux
)2, τ0 > ∓w,

0, τ0 � ∓w,
(6.17)
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and w, u were defined in (6.5).

Proof Using similar arguments to those leading to (6.8), we obtain

J (x + ε) −J (x)

ε

= au lim
ε→0

∫

(0,∞)\Uε(x)

Δ(−u
√

S(x + ε)) − Δ(−u
√

Sx)

ε

√
Sρ(S)dS (6.18)

with Uε(x) ≡ ∪S∈M(x)(S − ε, S + ε), where the set

M(x) ≡ {0 < S < ∞ : −u
√

Sx = τ0 ∨ −u
√

Sx = τ0 ± w} (6.19)

contains at most three elements. The function Δ(−u
√

Sx) is smooth, except at x = − τ0
u
√

S

and x = − τ0±w

u
√

S
. Thus, if S �∈ Uε(x), the function Δ(−u

√
Sx) is smooth on a small neigh-

borhood of x, and we can write the expansion (6.9), provided |ε| is small enough. Plugging
the expansion into (6.18), we observe that the limit limε→0

J (x+ε)−J (x)

ε
exists, it equals the

derivative dJ (x)

dx
, and

dJ (x)

dx
= −au2 lim

ε→0

∫

(0,∞)\Uε(x)

dΔ(−u
√

Sx)

dτ
Sρ(S)dS. (6.20)

This proves the differentiability of J (x) on R.
From (4.2) we have

w2 dΔ(τ)

dτ
=

⎧
⎪⎨

⎪⎩

1, τ0 − w < τ < τ0,

−1, τ0 < τ < τ0 + w,

0, τ ∈ R\[τ0 − w,τ0 + w].
(6.21)

Combined with

τ0 − w < −u
√

Sx < τ0 ⇐⇒ S−
x < S < S0

x ,

τ0 < −u
√

Sx < τ0 + w ⇐⇒ S0
x < S < S+

x ,

−u
√

Sx < τ0 − w ⇐⇒ 0 < S < S−
x ,

−u
√

Sx > τ0 + w ⇐⇒ S > S+
x ,

∀x < 0 (6.22)

and with

M(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{S−
x , S0

x , S
+
x }, τ0 > w,

{S0
x , S

+
x }, 0 < τ0 � w,

{S+
x }, −w < τ0 � 0,

∅, τ0 � −w,

∀x < 0 (6.23)

(6.17) and (6.20) imply the first equality in (6.14). Using (6.17) again together with the
identity

d

dx

∫ S∗
x

0
Sρ(S)dS = − 2

x
(S∗

x )
2ρ(S∗

x ) (6.24)
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following from the Second fundamental theorem of the Integral calculus, from the first
equality in (6.14) we readily obtain the second one.

The equalities in (6.15) immediately follow from Statement 4.1(1).
Finally, (6.16) is obtained from (6.14) by taking the limit x → 0− and, in the second

equality, also by realizing that ρ(0) = 0 and that ρ(S) = 0 for all S � Sρ . �

6.3 Part (3)

By virtue of (4.5) and (4.7),

H = 4h

ξ0

∫ ∞

0

√
SΔ

(

τ0

√
S

Smax

)

ρ(S)dS. (6.25)

Observing that

Δ

(

τ0

√
S

Smax

)

=
{

S
1/4
0
δ

(1 − |xS |), S1 < S < S2,

0, S ∈ (0,∞)\(S1, S2),
(6.26)

we immediately arrive at (4.11).

6.4 Part (4)

Using (4.5) and the substitution τ = − 4h
√

S
aξ0

x, we have

A = 4h

ξ0

∫ ∞

0

[∫

R

Δ

(

−4h
√

S

aξ0
x

)

dx

]√
Sρ(S)dS = a

∫

R

Δ(τ)dτ = a. (6.27)

Similarly,

α = 4h

aξ0

∫ ∞

0

[∫ ψmax

−∞
Δ

(

−4h
√

S

aξ0
x

)

dx

]√
Sρ(S)dS

=
∫ ∞

0

(∫ ∞

τ0

√
S

Smax

Δ(τ)dτ

)

ρ(S)dS. (6.28)

Observing that

∫ ∞

τ0

√
S

Smax

Δ(τ)dτ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 τ0

√
S

Smax
� τ0 + w,

1−xS(2−|xS |)
2 τ0 − w � τ0

√
S

Smax
� τ0 + w,

1 τ0

√
S

Smax
� τ0 − w,

(6.29)
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and that

τ0

√
S

Smax
� τ0 + w ⇐⇒

{
S � S2, τ0 > 0,

S � S1, τ0 < 0,

τ0 − w � τ0

√
S

Smax
� τ0 + w ⇐⇒ S1 � S � S2,

τ0

√
S

Smax
� τ0 − w ⇐⇒

{
S � S1, τ0 > 0,

S � S2, τ0 < 0,

(6.30)

we obtain (4.14).

6.5 Verification of (4.18)

The limit τ0 → ±∞ is equivalent to the limit c → ±∞ by (4.10). Thus, taking into ac-
count that S1 = (1 − 1

|c| )
2Smax for |c| � 1 and that S2 = (1 + 1

|c| )
2Smax, we observe that

0 � 1−xS(2−|xS |)
2 � 1 for S1 � S � S2 and |c| � 1, implying

0 � lim
τ0→±∞

∫ S2

S1

1 − xS(2 − |xS |)
2

ρ(S)dS

� sup
0<S<Sρ

ρ(S) lim
c→±∞

[(

1 + 1

|c|
)2

−
(

1 − 1

|c|
)2]

Sρ = 0. (6.31)

Therefore,

lim
τ0→±∞ α = lim

c→±∞α0 = lim
c→±∞

⎧
⎨

⎩

∫ (1− 1
|c| )2Smax

0 ρ(S)dS, if τ0 � 0,
∫ ∞

(1+ 1
|c| )2Smax

ρ(S)dS, if τ0 � 0
(6.32)

by (4.14). Combining this with the fact that limc→∞ Smax(c) = limc→−∞ Smax(c) due to (4.6),
we get (4.18).

Let |c| be now sufficiently large. Then, in order to find S∞
max, the relations (4.8) and (4.9)

read

0 =
(∫ Smax

(1− 1
|c| )2Smax

−
∫ (1+ 1

|c| )2Smax

Smax

)

Sρ(S)dS

= −2S2
max

[

3ρ(S) + 2S
dρ(S)

dS

]

Smax

1

c2
+ O

(
1

c4

)

= −4S3/2
max

dρ̃(Smax)

dS

1

c2
+ O

(
1

c4

)

(6.33)
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and

0 < 2S2
maxρ(Smax) −

[(

1 − 1

|c|
)2

Smax

]2

ρ

((

1 − 1

|c|
)2

Smax

)

−
[(

1 + 1

|c|
)2

Smax

]2

ρ

((

1 + 1

|c|
)2

Smax

)

= −2S3/2
max

[

3
dρ̃(Smax)

dS
+ 2Smax

d2ρ̃(Smax)

dS2

]
1

c2
+ O

(
1

c4

)

, (6.34)

respectively, where ρ̃(S) ≡ S3/2ρ(S). Thus, if dρ̃(Smax)

dS
= 0 and d2ρ̃(Smax)

dS2 < 0, the relations
(4.8) and (4.9) are satisfied up to the order O( 1

c4 ).
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Appendix Shape average revisited

In our analysis we have neglected the fact that the dimensionless parameter ξC ≡ BC√
SC

de-
fined in (2.14) that characterizes the crystal shape may change from crystal to crystal, and
we considered it constant for all the crystals (see (As6)). In this appendix we discuss the
modifications to our theory in the case when ξC is not fixed.

In order to carry out the argument easily and explicitly, we will conveniently use the
Gaussian function

G(y;w,A) ≡ A
w

e−π(
y
w )2

(7.1)

that attains its maximum at y = 0 and has the area A, the height A
w

, and the half-width√
log 8
π

w
.= 0.94w. The reason we work with the Gaussian G is that we can easily perform

the integrations of the form
∫ ∞

−∞
G(y − y1;w1,A1)G(y − y2;w2,A2) dy = G(y1 − y2;

√
w2

1 + w2
2,A1A2) (7.2)

and use the scaling property

G(by;w,A) = 1

b
G
(

y; w

b
,A

)

, b �= 0. (7.3)

If ξC varies from crystal to crystal, the current density J
ωE
E (ψ) is a triple average given

by (3.18) rather than the double average given by (3.23). Thus, we first need to evaluate the
discrete shape average that we will approximate by the integral

〈jC(S, τ, ξ,ψ)〉ξ ≈
∫

jC(S, τ, ξ,ψ)pS,τ (ξ) dξ, (7.4)

where pS,τ (ξ), the continuous version of the fraction P
(S,τ )
ξ , is for simplicity assumed

Gaussian, i.e.,

pS,τ (ξ) = G(ξ − ξ0;wξ ,1). (7.5)
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Here ξ0 is the mean value of ξ and wξ is sufficiently small so that the crystal shape is not
too oblong (i.e., ξ0 + wξ � ξ̂ and ξ0 − wξ � ξ̌ , see (As3) and Remark 2.7(iii)). Unlike in the
case of the function pS(τ) from (As7) (see Subsection 4.2.1), the dependence of ξ0 and wξ

on the crystal size S (and also on τ ) is hard to perceive. Therefore, for the sake of argument,
let us simply suppose that both ξ0 and wξ are independent of S and τ .

Approximating the cosh−2 spike in (3.22) by a Gaussian spike G with the same maximum
position, area, and height, the current density from a single crystal can be expressed as

jC(S, τ, ξ,ψ) ≈ G(ψ − ψC(S, τ, ξ);w0, a) with w0 ≡ a

hβS
. (7.6)

Combined with (7.2) through (7.5) and (3.20), we get

〈jC(S, τ, ξ,ψ)〉ξ ≈ G(ψ −ψC(S, τ, ξ0);w1, a) with w1 ≡
√

w2
0 +

( aτ

4h
√

S
wξ

)2
. (7.7)

Notice that in the limit wξ → 0 (uniform shape of all the crystals) we have w1 → w0 and,
correctly, (7.7) reduces to (7.6).

Assuming that pS(τ) is also Gaussian, pS(τ) = G(τ − τ0;wτ ,1) (c.f. (As7)), we can
similarly evaluate the average over the boundary tension. We find

〈〈jC(S, τ, ξ,ψ)〉ξ 〉τ ≈ G(ψ − ψC(S, τ0, ξ0);w2, a), (7.8)

where

w2 ≡
√

w2
0 +

(
aτ0

4h
√

S
wξ

)2

+
(

aξ0

4h
√

S
wτ

)2

≈ aξ0

4h
√

S

√

w2
τ +

(
τ0

ξ0
wξ

)2

. (7.9)

In the last step we neglected the term w2
0 ∝ S−2 in the square root, for it is small with respect

to the third term (wτ ∝ S−1/4 by (As7)).
We may now compare (7.8) with the dominant term DS(ψ) from Statement 3.14, i.e.,

with a result in which the ξ -average was not taken into account. Clearly, the main difference
concerns only the change of the height (or, equivalently, the half-width) of the resulting
spike. Namely, in the present situation the height is a

w2
, while the height of DS(ψ) corre-

sponds to a
(w2)wξ =0

. Thus, the effect of the ξ -averaging may be symbolically written as the

substitution

wτ −→
√

w2
τ +

(
τ0

ξ0
wξ

)2

. (7.10)

Thus, whenever

wτ  τ0

ξ0
wξ , (7.11)

the average over the values of ξ has practically no effect, and it may be well neglected, as
was done in (As6). As a matter of fact, the condition (7.11) can be simply checked, using
the experimental characteristics of the voltammogram. In particular, it is true for the three
experimental voltammograms to which we will applied our theory in Sect. 4 (see Table 1).
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